Database Management System "Normalization"

Submitted by:
Richa Shukla

Normalization

- Normalization is the process of organizing the data in the database.
- Normalization is used to minimize the redundancy from a relation or set of relations. It is also used to eliminate the undesirable characteristics like Insertion, Update and Deletion Anomalies.
- Normalization divides the larger table into the smaller table and links them using relationship.
- The Normal form is used to reduce redundancy from the database table.

Types of Normal form

1NF: A relation is in 1NF if it contains an atomic value.

 2NF: A relation will be in 2NF if it is in 1NF and all non-key attributes are fully functional dependent on the primary key.

 3NF: A relation will be in 3NF if it is in 2NF and no transition dependency exists.

- BCNF: A relation will be in 3NF and for each functional dependency (X → Y), X should be a super Key.
- 4NF: A relation will be in 4NF if it is in Boyce Codd normal form and has no multi-valued dependency.
- 5NF: A relation is in 5NF if it is in 4NF and not contains any join dependency and joining should be lossless

First Normal Form (1NF)

- A relation will be 1NF if it contains an atomic value.
- It states that an attribute of a table cannot hold multiple values. It must hold only singlevalued attribute.
- First normal form disallows the multi-valued attribute, composite attribute, and their combinations.

emp_id	emp_name	emp_address	emp_mobile
101	Herschel	New Delhi	8912312390
			8812121212
102	Jon	Kanpur	9900012222
103	Ron	Chennai	7778881212
			9990000123
104 Lester	Lester	Bangalore	8123450987

- Two employees (Jon & Lester) are having two mobile numbers so the company stored them in the same field as you can see in the table above.
- This table is **not in 1NF** as the rule says "each attribute of a table must have atomic (single) values",

To make the table complies with 1NF we should have the data like this:

emp_id	emp_name	emp_address	emp_mobile
101	Herschel	New Delhi	8912312390
102	Jon	Kanpur	8812121212
102	Jon	Kanpur	9900012222
103	Ron	Chennai	7778881212
104	Lester	Bangalore	9990000123
104	Lester	Bangalore	8123450987

Second normal form (2NF)

- A table is said to be in 2NF if both the following conditions hold:
- Table is in 1NF (First normal form)
- No non-prime attribute is dependent on the proper subset of any candidate key of table.

An attribute that is not part of any candidate key is known as non-prime attribute.

A teacher can teach more than one subjects, the table can have multiple rows for a same teacher.

subject	teacher_age
Maths	38
Physics	38
Biology	38
Physics	40
Chemistry	40
	Maths Physics Biology Physics

- Candidate Keys: {teacher_id, subject}
 Non prime attribute: teacher_age
- The table is in 1 NF because each attribute has atomic values. However, it is not in 2NF because non prime attribute teacher_age is dependent on teacher_id alone which is a proper subset of candidate key.
- This violates the rule for 2NF as the rule says "no non-prime attribute is dependent on the proper subset of any candidate key of the table".

To make the table complies with 2NF we can break it in two tables.

Teacher age details table:

teacher_id	teacher_age
111	38
222	38
333	40
'	

Teacher subject table:

teacher_id	subject
111	Maths
111	Physics
222	Biology
333	Physics
333	Chemistry

Third Normal form (3NF)

- A table design is said to be in 3NF if both the following conditions hold:
- Table must be in 2NF
- Transitive functional dependency of nonprime attribute on any super key should be removed.

A table is in 3NF if it is in 2NF and for each functional dependency X-> Y at least one of the following conditions hold:

- X is a super key of table
- Y is a prime attribute of table

An attribute that is a part of one of the candidate keys is known as prime attribute.

A company wants to store the complete address of each employee.

emp_id	emp_name	emp_zip	emp_state	emp_city	emp_district
1001	John	282005	UP	Agra	Dayal Bagh
1002	Ajeet	222008	TN	Chennai	M-City
1006	Lora	282007	TN	Chennai	Urrapakkam
1101	Lilly	292008	UK	Pauri	Bhagwan
1201	Steve	222999	MP	Gwalior	Ratan

Super keys: {emp_id}, {emp_id, emp_name}, {emp_id, emp_name, emp_zip}...so on
 Candidate Keys: {emp_id}

Non-prime attributes: all attributes except emp_id are non-prime as they are not part of any candidate keys.

- Here, emp_state, emp_city & emp_district dependent on emp_zip.
- emp_zip is dependent on emp_id.
- That makes non-prime attributes (emp_state, emp_city & emp_district) transitively dependent on super key (emp_id).
- This violates the rule of 3NF.

employee table:

emp_id	emp_name	emp_zip
1001	John	282005
1002	Ajeet	222008
1006	Lora	282007
1101	Lilly	292008
1201	Steve	222999

employee_zip table:

emp_zip	emp_state	emp_city	emp_district
282005	UP	Agra	Dayal Bagh
222008	TN	Chennai	M-City
282007	TN	Chennai	Urrapakkam
292008	UK	Pauri	Bhagwan
222999	MP	Gwalior	Ratan

3NF is achieved, considered as the database is normalized.

